Abstract

Alzheimer's disease (AD) is characterized by the extensive deposition of amyloid β protein (Aβ) in the brain cortex. Aβ is produced from β-amyloid precursor protein (APP) by β-secretase and γ-secretase. β-Secretase has been identified as beta-site APP cleaving enzyme1 (BACE1). We produced rabbit polyclonal antibodies against the amino and the carboxyl terminals of BACE1. Using these antibodies, BACE1 was characterized in temporal lobe cortices by Western blotting and immunohistochemistry. Immunohistochemical studies employing anti-GFAP and anti-MAP2 antibodies as well as anti-BACE1 antibodies showed that BACE1 was expressed exclusively in neurons but not in glial cells. Brain samples were directly extracted by 0.5% SDS and analyzed by Western blotting and densitometer. Although the mean level of BACE1/mg protein in AD brains was not increased, the ratio of BACE1 to MAP2 or to NSE was significantly increased compared with that in control brains. Taken together, these findings suggest that those neurons that survive in AD brains might generate more BACE1 than normal neurons in control brains, indicating that increased BACE1 activity could be one of the causes of AD. This could justify the development of anti-BACE1 drugs for AD treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.