Abstract
In this paper, we first give some properties based on independence relations between matrix beta random variables of the first kind and of the second kind which are satisfied under a condition on the parameters of the distributions. We then show that with the matrix beta-hypergeometric distribution, the properties established for the beta distribution are satisfied without any condition on the parameters. The results involve many remarkable properties of the zonal polynomials with matrix arguments and the use of random matrix continued fractions. As a particular case, we get the results established for the real beta-hypergeometric distributions by Asci, Letac and Piccioni [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.