Abstract
Pyruvate kinase M2 (PKM2), playing a central role in regulating aerobic glycolysis, was considered as a promising target for cancer therapy. However, its role in cancer metastasis is rarely known. Here, we found a tight relationship between PKM2 and breast cancer metastasis, demonstrated by the findings that beta‐elemene (β‐elemene), an approved drug for complementary cancer therapy, exerted distinct anti‐metastatic activity dependent on PKM2. The results indicated that β‐elemene inhibited breast cancer cell migration, invasion in vitro as well as metastases in vivo. β‐Elemene further inhibited the process of aerobic glycolysis and decreased the utilization of glucose and the production of pyruvate and lactate through suppressing pyruvate kinase activity by modulating the transformation of dimeric and tetrameric forms of PKM2. Further analysis revealed that β‐elemene suppressed aerobic glycolysis by blocking PKM2 nuclear translocation and the expression of EGFR, GLUT1 and LDHA by influencing the expression of importin α5. Furthermore, the effect of β‐elemene on migration, invasion, PKM2 transformation, and nuclear translocation could be reversed in part by fructose‐1,6‐bisphosphate (FBP) and L‐cysteine. Taken together, tetrameric transformation and nuclear translocation of PKM2 are essential for cancer metastasis, and β‐elemene inhibited breast cancer metastasis via blocking aerobic glycolysis mediated by dimeric PKM2 transformation and nuclear translocation, being a promising anti‐metastatic agent from natural compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.