Abstract
AbstractAimSeverity and heterogeneity of stress are major constraints of beta diversity, but their relative influence is poorly understood. Here, we addressed this question by examining the patterns of beta diversity in stress‐sensitive versus stress‐tolerant stream diatoms and their response to local versus regional factors along gradients of stress severity and heterogeneity.LocationThe Adirondack region of New York.MethodsBeta diversity was measured as multivariate dispersion of communities across high stress, low stress, and high + low stress (heterogeneous) environments, encompassing 200 stream samples. Null models were implemented to assess community similarity relative to randomly assembled communities and the importance of local assembly processes versus the regional species pool.ResultsThe overall beta diversity was influenced by a combination of severity and heterogeneity of stress, while beta diversity of sensitive species increased with heterogeneity. Beta diversity of tolerant species did not vary with either severity or heterogeneity of stress. Heterogeneity decreased community similarity relative to the null expectation in all groups of species. Stress reduced the importance of local assembly mechanisms for the overall beta diversity and sensitive species beta diversity. In contrast, the importance of local assembly mechanisms increased with stress regarding beta diversity of tolerant species.Main conclusionsBeta diversity responded to both severity and heterogeneity of stress, but turnover along these gradients was mostly driven by sensitive species. The overall beta diversity and beta diversity of sensitive species became more constrained by the depauperate regional species pool, as opposed to local assembly mechanisms. While heterogeneous stress contributed to beta diversity, severe stress suppressed beta diversity through elimination of sensitive species. Therefore, an increase in beta diversity in an environmentally‐stressed region may serve as a forewarning for future loss of sensitive species, should the stress continue to intensify.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.