Abstract

Laser induced fluorescence measurements of ion temperatures, parallel and perpendicular to the local magnetic field, in the Large Experiment on Instabilities and Anisotropies space simulation chamber (a steady-state, high beta, argon plasma) display an inverse correlation between the upper bound on the ion temperature anisotropy and the parallel ion beta (β=8πnkT/B2). These observations are consistent with in situ spacecraft measurements in the Earth’s magnetosheath and with a theoretical/computational model that predicts that such an upper bound is imposed by scattering from enhanced fluctuations due to growth of the ion cyclotron anisotropy instability (the Alfvén ion cyclotron instability).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call