Abstract
AbstractMost space plasmas are weakly collisional. Due to the low collision rate, the plasmas are routinely out of local thermal equilibrium and often exhibit non‐Maxwellian velocity distributions. The charged particles typically exhibit anisotropy in temperature measurements, that is, distinct temperatures are observed perpendicular and parallel (T⊥i and T||i) to the local magnetic field. Numerous prior studies have shown that for increasing values of parallel ion beta (β||i), the range of ion temperature anisotropy (Ri = T⊥i/T||i) values becomes narrower. Conventionally, this behavior has been attributed to the actions of kinetic microinstabilities. This study is the first to explore such β||i‐dependent limits on ion temperature anisotropy in Jupiter's magnetosheath. We use linear Vlasov theory to compute contours of constant growth rate for different instability thresholds, which closely align with the limits of the data distribution, supporting that these instabilities are acting to limit extremes of ion temperature anisotropy in the Jovian magnetosheath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.