Abstract

Nanocrystallite aggregates have great potential in semiconductor-based photocatalysis toward environmental pollution removal. In this work, we reported the fabrication of broccoli-like zinc oxide nanoaggregates in the presence of beta-cyclodextrin in ethylene glycol-H2O medium. The composition and structure of the as-obtained ZnO nanoaggregates were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. It was observed that the beta-cyclodextrin played an important role in the fabrication of such broccoli-like structure. A plausible formation mechanism was discussed on the basis of the controllable experiments. The photocatalytic performance of the products was studied through the photodegradation of rhodamine B under simulated sunlight irradiation. Compared to the spherical ZnO nanoaggregates and ZnO broken spheres, the broccoli-like ZnO exhibited superior photocatalytic efficiency. Based on the photocurrent and electrochemical measurement results, the higher separation efficiency of the photogenerated carriers and lower recombination efficiency of the photoinduced electron–hole pairs over the broccoli-like ZnO nanoaggregates contributed to their remarkable photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.