Abstract

Personalized learning is a promising educational approach that aims to provide high-quality personalized services for each student with minimum demands for practice data. The key to achieving that lies in the cognitive diagnosis task, which estimates the cognitive state of the student through his/her logged data of doing practice quizzes. Nevertheless, in the personalized learning scenario, existing cognitive diagnosis models suffer from the inability to (1) quickly adapt to new students using a small amount of data, and (2) measure the reliability of the diagnosis result to avoid improper services that mismatch the student's actual state. In this paper, we propose a general Bayesian mETA-learned Cognitive Diagnosis framework (BETA-CD), which addresses the two challenges by prior knowledge exploitation and model uncertainty quantification, respectively. Specifically, we firstly introduce Bayesian hierarchical modeling to associate each student's cognitive state with a shared prior distribution encoding prior knowledge and a personal posterior distribution indicating model uncertainty. Furthermore, we formulate a meta-learning objective to automatically exploit prior knowledge from historical students, and efficiently solve it with a gradient-based variational inference method. The code will be publicly available at https://github.com/AyiStar/pyat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.