Abstract
Knowledge of when and where signaling pathways are activated is crucial for understanding embryonic development. In this study, we have systematically analyzed and compared the signaling pattern of four major pathways by localization of the activated key components beta-catenin (Wnt proteins), MAPK (tyrosine kinase receptors/FGF), Smad1 (BMP proteins) and Smad2 (Nodal/activin/Vg1). We have determined semi-quantitatively the distribution of these components at 18 consecutive stages in Xenopus development, from early blastula to tailbud stages, by immunofluorescence on serial cryosections. The image obtained is that of very dynamic and widespread activities, with very few inactive regions. Signaling fields can vary from large gradients to restricted areas with sharp borders. They do not respect tissue boundaries. This direct visualization of active signaling verifies several predictions inferred from previous functional data. It also reveals unexpected signal patterns, pointing to some poorly understood aspects of early development. In several instances, the patterns strikingly overlap, suggesting extensive interplay between the various pathways. To test this possibility, we have manipulated maternal beta-catenin signaling and determined the effect on the other pathways in the blastula embryo. We found that the patterns of P-MAPK, P-Smad1 and P-Smad2 are indeed strongly dependent on beta-catenin at this stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.