Abstract

Beta-caryophyllene (BCP) is a natural bicyclic sesquiterpene with high biological activity. Potentially, it can be used in the treatment of a wide range of neurological diseases. However, to date, there are practically no data on the interaction of BCP with biological membranes. In the present work, we studied for the first time the interaction of BCP with model membranes—liposomes based on egg yolk phosphatidylcholine (Egg PC) with a variable cholesterol content (from 0 to 25 w.%). Using ATR-FTIR spectroscopy, we have shown that the membrane rigidity and cholesterol content dramatically affect the nature of the interaction of BCP with the bilayer both at room temperature and at physiological temperatures. The incorporation of BCP into the thickness of the bilayer leads to changes in the subpolar region of the bilayer, and at a high cholesterol content, it can provoke the formation of defects in the membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call