Abstract

Several studies suggest that beta-carotene reduces the risk of some cancers. Except for its function as an antioxidant, the effect of this vitamin on mammalian cells remains poorly defined. This study was performed to show whether beta-carotene treatment of murine B-16 melanoma cells in culture induces differentiation and alters the adenylate cyclase (AC) system. The AC system mediates the action of agents which regulate cell differentiation and transformation. Results showed that beta-carotene treatment for a period of 24 hours or more caused morphological differentiation without changing the level of melanin, and reduced basal and melanocyte-stimulated hormone (MSH)-, sodium fluoride (NaF)-, and forskolin-stimulated AC activity in vitro. Retinol, a metabolite of beta-carotene, inhibited growth without morphological differentiation and reduced basal and MSH- and NaF-stimulated AC activity. However, butylated hydroxyanisole, a lipid-soluble antioxidant, also reduced growth without morphological differentiation, but it failed to alter basal or MSH-stimulated AC activity. The present and previous studies show that the AC system represents a common site where some antitumor-promoting vitamins (beta-carotene, retinol, retinoic acid, and alpha-tocopheryl succinate) act.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.