Abstract

While much research has focused on understanding how individual stimuli are encoded in episodic memory, less is known about how a series of events is bound into a coherent episode. Cognitive models of episodic memory propose that information about presented stimuli is integrated into a composite representation reflecting one's past experience, allowing events separated in time to become associated. Recent evidence suggests that neural oscillatory activity may be critically involved in this process. To examine how oscillatory activity contributes to binding of information across events, we measured scalp EEG as participants studied categorized lists of people, places, and objects. We assessed their memory for the lists using free recall, allowing us to characterize the temporal and semantic organization of the studied items in memory. Using pattern classification, we identified EEG activity during encoding at a range of frequencies and scalp locations that was sensitive to the category of presented stimuli. In the beta band (16–25Hz) at right posterior electrodes, we observed activity that was also sensitive to the category of recently presented stimuli. This neural activity showed two characteristics consistent with a representation of the recent past: It became stronger when multiple items from the same category were presented in succession, and it contained a fading trace of the previous category after a category shift. When items were separated by an inter-item distraction task, this integrative beta-band activity was disrupted. Distraction also led to decreased semantic organization of the studied materials without affecting their temporal organization; this suggests that distraction disrupts the integration of semantic information over time, preventing encoding of items in terms of the semantic context of earlier items. Our results provide evidence that beta-band activity is involved in maintaining information about recent events, allowing construction of a coherent representation of a temporally extended episode in memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.