Abstract

In the sarcolemma fraction of foot muscles of a fresh-water bivalve mollusc, Anodonta cygnea, a direct inhibitory, rather than stimulatory, effect of the beta-adrenergic agonist isoproterenol, at micromolar concentration, on cAMP level and adenylate cyclase activity, was revealed. It was blocked by beta- but not alpha-adrenergic antagonists. A single class of [3H]dihydroalprenolol-binding sites with binding properties of beta-adrenergic receptor was detected in mollusc sarcolemma. Potentiation of the inhibitory effect of isoproterenol on mollusc adenylate cyclase activity by GTP or guanosine 5'-[beta,gamma-imido]triphosphate at micromolar concentrations, and its elimination in the presence of guanosine 5'-[beta-thio]diphosphate, were shown. The pertussis-toxin-induced ADP-ribosylation of sarcolemma 40-kDa protein [immunochemically related in the C-terminal part to pertussis-toxin-sensitive guanine-nucleotide-binding regulatory protein (G-protein) alpha subunits of vertebrates], as well as the treatment of mollusc sarcolemma with antisera responsive to the C-terminus of vertebrate inhibitory G-protein (G(i)) alpha subunit led to elimination of the inhibitory effect of isoproterenol on adenylate cyclase activity. The results obtained suggest that beta-agonist-induced inhibition of adenylate cyclase in A. cygnea foot muscle may be realized via the beta-adrenoreceptor/G(i) signalling pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call