Abstract

The structure and function of the human nervous system are altered in space when compared with their state on earth. To investigate directly the influence of simulated microgravity conditions which may be beneficial for cultivation and proliferation of human neural stem cells (hNSCs), the rotary cell culture system (RCCS) developed at the National Aeronautics and Space Administration (NASA) was used. RCCS allows the creation of a unique microgravity environment of low shear force, high-mass transfer and enables three-dimensional (3D) cell culture of dissimilar cell types. The results show that simulated microgravity using an RCCS would induce β-adrenoceptor, upregulate cAMP formation and activate both PKA and CREB (cAMP response element binding protein) pathways. The expression of intracellular mitochondrial genes, including PGC1α (PPAR coactivator 1α), nuclear respiratory factors 1 and 2 (NRF1 and NRF2) and mitochondrial transcription factor A (Tfam), regulated by CREB, were all significantly increased at 72h after the onset of microgravity. Accordingly and importantly, the ATP level and amount of mitochondrial mass were also increased. These results suggest that exposure to simulated microgravity using an RCCS would induce cellular proliferation in hNSCs via an increased mitochondrial function. In addition, the RCCS bioreactor would support hNSCs growth, which may have the potential for cell replacement therapy in neurological disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.