Abstract

We investigated the mechanism by which cAMP increases sodium transport in lung epithelial cells. Alveolar type II (ATII) cells have two types of amiloride-sensitive, cation channels: a nonselective cation channel (NSC) and a highly selective channel (HSC). Exposure of ATII cells to cAMP, beta-adrenergic agonists, or other agents that increase adenylyl cyclase activity increased activity of both channel types, albeit by different mechanisms. NSC open probability (P(o)) increased severalfold when exposed to terbutaline, isoproterenol, forskolin, or cAMP analogs without any change in NSC number. In contrast, terbutaline increased HSC number with no significant change in HSC P(o). For both channels, the effect of terbutaline was blocked by propranolol and H-89, suggesting a protein kinase A (PKA) requirement for beta-adrenergic-induced changes in channel activity. Terbutaline increased cAMP levels in ATII cells, but intracellular calcium also increased. Calcium sequestration with BAPTA blocked beta-adrenergic-induced increases in NSC P(o) but did not alter HSC activity. These observations suggest that beta-adrenergic stimulation increases intracellular cAMP and activates PKA. PKA increases HSC number and increases intracellular calcium. The increase in calcium increases NSC P(o). Thus increased cAMP levels are likely to increase lung sodium transport regardless of which channel type is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.