Abstract

The subtype of beta-adrenergic receptors in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus was studied. Pigment of denervated melanophores in isolated, split caudal fins was preliminarily aggregated by incubating the specimens in a physiological saline containing 10 microM phentolamine and 30-100 microM verapamil or 2-10 nM melatonin, and the responses of the melanophores to a beta-adrenergic agonist added to the incubating medium were recorded photoelectrically. The beta-adrenergic agonists noradrenaline, adrenaline, isoproterenol, salbutamol and, dobutamine were all effective in evoking a dispersion of melanophore pigment in the presence of phentolamine and verapamil or melatonin. The pigment-dispersing effect of noradrenaline (beta 1-selective agonist) was inhibited by metoprolol (beta 1-selective antagonist), propranolol,- and butoxamine. Whereas, the effect of salbutamol (beta 2-selective agonist) was hardly inhibited by metoprolol, though it was considerably inhibited by propranolol and ICI-118551. It was estimated that beta 1- and beta 2-adrenergic receptors coexist at ratios of 8.6:91.4, in the melanophore of Tridentiger trigonocephalus, and 25:75, in the melanophore of Chasmichthys gulosus, through the analyses of Hofstee plots of the effects of the beta-adrenergic drugs. It was suggested that the relation between the pigment-dispersing effect of a beta-adrenergic agonist on the melanophores and the concentration of the drug follows mass action kinetics, when the effect is mainly caused by the activation of beta 2-adrenergic receptors of the melanophores. However, when it is mainly caused by the activation of beta 1-adrenergic receptors of the melanophores, the relation does not follow mass action kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.