Abstract

A clonal cell line, AS583-8.E4.22, from the embryonic day 15 rat basal forebrain was established using retrovirus-mediated transduction of a temperature-sensitive mutant of the simian virus 40 (SV40) large tumour antigen. The cell line expresses cytoskeletal and neurotransmitter features indicative of neuronal commitment. In response to agents that increase intracellular cAMP, including forskolin and catecholamines, the cell line exhibits rapid process outgrowth and growth cone formation that does not require new gene expression or protein synthesis. The neurite outgrowth induced by catecholamines is mediated by beta 2-adrenergic receptors and is characterized by a rapid, reversible redistribution of filamentous actin. Neurons from primary cultures of embryonic day 15 basal forebrain were also found to respond to beta-adrenergic receptor agonists by enhancing growth cone formation. These results suggest that catecholamines provide cues that induce cytoskeletal rearrangements leading to neuronal process outgrowth and growth cone formation in the developing basal forebrain and possibly other neuronal progenitor cell populations. The neuronal basal forebrain cell line provides an ideal model to study the signalling mechanisms underlying the catecholamine-induced process outgrowth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.