Abstract
Imbalances of beta-adrenoceptor (beta-AR) and muscarinic ACh receptor (mAChR) input are thought to underlie perinatal cardiovascular abnormalities in conditions such as sudden infant death syndrome. Administration of isoproterenol, a beta(1)/beta(2)-AR agonist, to neonatal rats on postnatal days (PN) 2-5 caused downregulation of cardiac m(2)AChRs and a corresponding decrement in their control of adenylyl cyclase activity. Terbutaline, a beta(2)-selective agonist that crosses the placenta and the blood-brain barrier, was also effective when given either on PN 2-5 or during gestational days 17-20. Terbutaline failed to downregulate brain m(2)AChRs, even though it downregulated beta-ARs; beta-ARs and m(2)AChRs are located on different cell populations in the brain, but they are on the same cells in the heart. Destruction of catecholaminergic neurons with neonatal 6-hydroxydopamine upregulated cardiac but not brain m(2)AChRs. These results suggest that perinatal beta-AR stimulation shifts cardiac receptor production away from the generation of m(2)AChRs so that the development of sympathetic innervation acts as a negative modulator of cholinergic function. Accordingly, tocolytic therapy with beta-AR agonists may compromise the perinatal balance of adrenergic and cholinergic inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.