Abstract

Glucocorticoid hormones influence manifold neuronal processes including learning, memory, and emotion via the glucocorticoid receptor (GR). Catecholamines further modulate these functions, although the underlying molecular mechanisms are poorly understood. Here, we show that epinephrine and norepinephrine potentiate ligand-dependent GR transactivation in a hippocampal cell line (HT22) via beta(2)-adrenergic receptors. This enhancement was strongest at low concentrations of glucocorticoids and was accompanied by increased GR binding to a glucocorticoid-responsive element (GRE). beta(2)-Adrenergic receptor-mediated GR enhancement was relayed via G protein beta gamma-subunits, insensitive to pertussis toxin and independent of protein kinase A (PKA). In contrast, the catecholamine-evoked GR enhancement was strongly reduced by wortmannin, suggesting a critical role for phosphoinositide 3-kinase (PI3-K). In agreement, epinephrine directly activated PI3-K in vivo. Similarly, stimulation of tyrosine kinase receptors coupled to PI3-K activation, e.g. receptors for insulin-like growth factor I (IGF-I) or fibroblast growth factor (FGF), increased GR transactivation. Further analysis indicated that G protein-coupled receptor (GPCR) and tyrosine kinase receptor signals converge on PI3-K through separate mechanisms. Blockade of GR enhancement by wortmannin was partially overcome by expression of the downstream-acting protein kinase B (PKB/Akt). Collectively, our findings demonstrate that GPCRs can regulate GR transactivation by stimulating PI3-K. This novel cross-talk may provide new insights into the molecular processes of learning and memory and the treatment of stress-related disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.