Abstract

beta-Adrenergic agonists accelerate the clearance of alveolar fluid by increasing the expression and activity of epithelial solute transport proteins such as amiloride-sensitive epithelial Na(+) channels (ENaC) and Na,K-ATPases. Here we report that adenoviral-mediated overexpression of a human beta(2)-adrenergic receptor (beta(2)AR) cDNA increases beta(2)AR mRNA, membrane-bound receptor protein expression, and receptor function (procaterol-induced cAMP production) in human lung epithelial cells (A549). Receptor overexpression was associated with increased catecholamine (procaterol)-responsive active Na(+) transport and increased abundance of Na,K-ATPases in the basolateral cell membrane. beta(2)AR gene transfer to the alveolar epithelium of normal rats improved membrane-bound beta(2)AR expression and function and increased levels of ENaC (alpha subunit) abundance and Na,K-ATPases activity in apical and basolateral cell membrane fractions isolated from the peripheral lung, respectively. Alveolar fluid clearance (AFC), an index of active Na(+) transport, in beta(2)AR overexpressing rats was up to 100% greater than sham-infected controls and rats infected with an adenovirus that expresses no cDNA. The addition of the beta(2)AR-specific agonist procaterol to beta(2)AR overexpressing lungs did not increase AFC further. AFC in beta(2)AR overexpressing lungs from adrenalectomized or propranolol-treated rats revealed clearance rates that were the same or less than normal, untreated, sham-infected controls. These experiments indicate that alveolar beta(2)AR overexpression improves beta(2)AR function and maximally upregulates beta-agonist-responsive active Na(+) transport by improving responsiveness to endogenous catecholamines. These studies suggest that upregulation of beta(2)AR function may someday prove useful for the treatment of pulmonary edema.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.