Abstract

Kaposi’s Sarcoma-associated Herpesvirus (KSHV) establishes stable latent infection in B-lymphocytes and pleural effusion lymphomas (PELs). During latency, the viral genome persists as an epigenetically constrained episome with restricted gene expression programs. To identify epigenetic regulators of KSHV latency, we screened a focused small molecule library containing known inhibitors of epigenetic factors. We identified JQ1, a Bromodomain and Extended Terminal (BET) protein inhibitor, as a potent activator of KSHV lytic reactivation from B-cells carrying episomal KSHV. We validated that JQ1 and other BET inhibitors efficiently stimulated reactivation of KSHV from latently infected PEL cells. We found that BET proteins BRD2 and BRD4 localize to several regions of the viral genome, including the LANA binding sites within the terminal repeats (TR), as well as at CTCF-cohesin sites in the latent and lytic control regions. JQ1 did not disrupt the interaction of BRD4 or BRD2 with LANA, but did reduce the binding of LANA with KSHV TR. We have previously demonstrated a cohesin-dependent DNA-loop interaction between the latent and lytic control regions that restrict expression of ORF50/RTA and ORF45 immediate early gene transcripts. JQ1 reduced binding of cohesin subunit Rad21 with the CTCF binding sites in the latency and lytic control regions. JQ1 also reduced DNA-loop interaction between latent and lytic control regions. These findings implicate BET proteins BRD2 and BRD4 in the maintenance of KSHV chromatin architecture during latency and reveal BET inhibitors as potent activators of KSHV reactivation from latency.

Highlights

  • Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is a human gammaherpesvirus responsible for all forms of Kaposi’s Sarcoma (KS) and strongly associated with pleural effusion lymphomas (PELs) and Castleman’s Disease[1]

  • KSHV is an oncogenic human herpesvirus implicated as the causative agent of KS and cofactor in pleural effusion lymphomas (PELs)

  • We found that small molecule inhibitors of Bromodomain and Extended Terminal (BET) family have potent activity in triggering the lytic switch during latent infection in PELs

Read more

Summary

Introduction

Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is a human gammaherpesvirus responsible for all forms of Kaposi’s Sarcoma (KS) and strongly associated with pleural effusion lymphomas (PELs) and Castleman’s Disease[1]. The major latency transcripts include the multi-cistronic RNAs encoding LANA (ORF73), vCyclin (ORF72), vFLIP (ORF71), K1, and 21 miRNAs. The major immediate early genes are regulated as a cluster of RNAs that can be initiated during the early stage of the reactivation process. The major immediate early genes are regulated as a cluster of RNAs that can be initiated during the early stage of the reactivation process These include the immediate early transcriptional activator RTA (ORF50), KbZip (ORF51), and a series of transcripts that are made in the opposite orientation that include ORF45-49. Lytic transcription is repressed during latency, while latency transcription occurs efficiently. How these regions are differentially regulated and how they communicate with each other remains an area of active interest

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call