Abstract

We study the impact of tie-breaking on the behavior of greedy best-first search with a fixed state space and fixed heuristic. We prove that it is NP-complete to determine the number of states that need to be expanded by greedy best-first search in the best case or in the worst case. However, the best- and worst-case behavior can be computed in polynomial time for undirected state spaces. We perform computational experiments on benchmark tasks from the International Planning Competitions that compare the best and worst cases of greedy best-first search to FIFO, LIFO and random tie-breaking. The experiments demonstrate the importance of tie-breaking in greedy best-first search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.