Abstract

The perception of spectrotemporal changes is crucial for distinguishing between acoustic signals, including vocalizations. Temporal modulation transfer functions (TMTFs) have been measured in many species and reveal that the discrimination of amplitude modulation suffers at rapid modulation frequencies. TMTFs were measured in six CBA/CaJ mice in an operant conditioning procedure, where mice were trained to discriminate an 800 ms amplitude modulated white noise target from a continuous noise background. TMTFs of mice show a bandpass characteristic, with an upper limit cutoff frequency of around 567 Hz. Within the measured modulation frequencies ranging from 5 Hz to 1280 Hz, the mice show a best sensitivity for amplitude modulation at around 160 Hz. To look for a possible parallel evolution between sound perception and production in living organisms, we also analyzed the components of amplitude modulations embedded in natural ultrasonic vocalizations (USVs) emitted by this strain. We found that the cutoff frequency of amplitude modulation in most of the individual USVs is around their most sensitive range obtained from the psychoacoustic experiments. Further analyses of the duration and modulation frequency ranges of USVs indicated that the broader the frequency ranges of amplitude modulation in natural USVs, the shorter the durations of the USVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.