Abstract

Computational models of electrochemical biodegradation of magnesium (Mg)-based implants are uncertain. To quantify the model uncertainty, iterative evaluations are needed. This presents a challenge, especially for complex, multiscale models as is the case here. Approximating high-cost and complex models with easy-to-evaluate surrogate models can reduce the computational burden. However, the application of this approach to complex degradation models remains limited and understudied. This work provides a workflow to quantify different types of uncertainty within biodegradation models. Three surrogate models-Kriging, polynomial chaos expansion, and polynomial chaos Kriging-are compared based on the minimum number of samples required for surrogate model construction, surrogate model accuracy, and computational time. The surrogate models are tested for three computational models representing Mg-based implant biodegradation. Global sensitivity analysis and uncertainty propagation are used to analyze the uncertainties associated with the different models. The findings indicate that Kriging proves effective for calibrating diverse computational models with minimal computational time and cost, while polynomial chaos expansion and polynomial chaos Kriging exhibit greater capability in predicting propagated uncertainties within the computationalmodels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.