Abstract

The aim of this study is the determination of the best fit ellipsoid to given points by quaternions. The problem of the fitting ellipsoid is frequently encountered in image processing, computer games, medicine, engineering and science applications, geodesy, etc. The ellipsoid fitting problem is the process of determining the ellipsoid that best fits a given set of points in 3D. In the fitting process, it is generally done over two models. The first of these is the algebraic method and the second one is orthogonal (geometric) method. In this study, we tried to solve the problem of algebraic and orthogonal ellipsoid fitting based on Euler angles for the first time over quaternions. The superiority of quaternions over Euler rotation angles is well known. In addition, the variance–covariance matrix of the parameters of the fitted ellipsoid will also be calculated. Numerical applications show that the proposed method can be used successfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.