Abstract
Based on magnetron hollow cathode discharge, the magnetic condition of glow plasma generation in high vacuum, including both direction and magnitude of the applied magnetic field, is theoretically derived and experimentally evaluated in this paper. Single particle orbital theory is introduced to discuss the possibilities to generate glow plasma at gas pressure under 10−2 Pa when the magnetic field direction is parallel or perpendicular or oblique to the electric field direction. A quantitative estimation criterion of magnetic induction intensity is also proposed in theory. The comparison with experiments suggests that glow plasma in high vacuum will form more easily in oblique magnetic field condition and that the criterion is accurate enough to estimate magnetic induction intensity at a certain gas pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.