Abstract
Higher-order tensors are used in many application fields, such as statistics, signal processing, and scientific computing. Efficient and reliable algorithms for manipulating these multi-way arrays are thus required. In this paper, we focus on the best rank-$(R_1,R_2,R_3)$ approximation of third-order tensors. We propose a new iterative algorithm based on the trust-region scheme. The tensor approximation problem is expressed as a minimization of a cost function on a product of three Grassmann manifolds. We apply the Riemannian trust-region scheme, using the truncated conjugate-gradient method for solving the trust-region subproblem. Making use of second order information of the cost function, superlinear convergence is achieved. If the stopping criterion of the subproblem is chosen adequately, the local convergence rate is quadratic. We compare this new method with the well-known higher-order orthogonal iteration method and discuss the advantages over Newton-type methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.