Abstract

Neoadjuvant systemic treatment of early-stage breast cancer has been used to improve resectability and reduce the extent of breast and axillary surgery. More recently, several other merits of neoadjuvant systemic treatment have emerged, including the ability to tailor clinically available adjuvant systemic therapy options based on pathologic response and to serve as a platform for early assessment of novel agents and response biomarkers and as an avenue for treatment optimization investigations (local and systemic therapy escalation and de-escalation trials guided by pathologic response). Attainment of a pathologic complete response (pCR) is associated with excellent long-term outcomes; conversely, the presence of residual disease is associated with a high risk of recurrence for patients with HER2-positive breast cancer and triple-negative breast cancer (TNBC). Treatment strategies in early-stage HER2-positive breast cancer include regimens incorporating trastuzumab, pertuzumab, ado-trastuzumab emtansine, and neratinib, resulting in high pCR rates and overall excellent long-term outcomes. Currently available cytotoxic regimens yield pCR for 35% to 55% of patients with TNBC, and immune checkpoint inhibition is showing early promise for this subtype. New drug and predictive biomarker evaluations in the neoadjuvant setting aim to develop optimal treatment strategies for the individual patient, with the ultimate goal of maximizing efficacy and minimizing toxicity. Research efforts involving novel agents are being undertaken to address the high risk of recurrence for patients with residual disease. Omission of breast surgery following neoadjuvant chemotherapy requires further development of imaging and biopsy techniques to accurately assess the extent of residual disease before clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call