Abstract
This article presents a new adaptive algorithm called FS-SLOA (Feature Selection-Seven Spot Ladybird Optimization Algorithm) which is a meta-heuristic feature selection method based on the foraging behavior of a seven spot ladybird. The new efficient technique has been applied to find the best subset features, which achieves the highest accuracy in classification using three classifiers: the Naive Bayes (NB), the Nearest Neighbors (KNN) and the Support Vector Machine (SVM). The authors' proposed approach has been experimented on four well-known benchmark datasets (Wisconsin Breast cancer, Pima Diabetes, Mammographic Mass, and Dermatology datasets) taken from the UCI machine learning repository. Experimental results prove that the classification accuracy of FS-SLOA is the best performing for different datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.