Abstract
AbstractIn (ZAA J. Anal. Appl., Vol. 16, No. 1, pp. 143–155) we introduced a method to determine the optimal domains for elliptic optimal‐shape design problems in polar coordinates. However, the same problem in cartesian coordinates, which are more applicable, is found to be much harder, therefore we had to develop a new approach for these designs. Herein, the unknown domain is divided into a fixed and a variable part and the optimal pair of the domain and its optimal control, is characterized in two stages. Firstly, the optimal control for the each given domain is determined by changing the problem into a measure‐theoretical one, replacing this with an infinite dimensional linear programming problem and approximating schemes; then the nearly optimal control function is characterized. Therefore a function that offers the optimal value of the objective function for a given domain, is defined. In the second stage, by applying a standard optimization method, the global minimizer pair will be obtained. Some numerical examples are also given. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.