Abstract

This study aimed to identify the control strategy of obstacle-crossing of different heights with a multi-objective optimal control technique. Twelve young healthy adults walked and crossed obstacles of three different heights while their kinematic and ground reaction force data were measured simultaneously. Obstacle-crossing was formulated as an optimal control problem with two conflicting objectives: minimization of mechanical energy expenditure and maximization of foot-obstacle clearance. The results supported the hypothesis that experimentally measured ankle trajectories and joint angles of the swing limb and the joint moments of the stance limb could be predicted by the best compromise between these objectives, which was also independent of obstacle height. This control strategy was fundamentally different from that for unobstructed gait, and appeared to be pre-programmed into the nervous system. The results will serve as baseline data and the current technique be used for identifying changes in obstacle-crossing control strategies in people at higher risk of falling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.