Abstract

This paper is devoted to an exact solution of problems of best approximation in the uniform and integral metrics of classes of periodic functions representable as a convolution of a kernel not increasing the oscillation with functions having a given convex upwards majorant of the modulus of continuity. The approximating sets are taken to be the trigonometric polynomials in the case of the uniform and integral metrics, and convolutions of the kernel defining the class with polynomial splines in the case of the integral metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.