Abstract

Kuhn-Tucker points play a fundamental role in the analysis and the numerical solution of monotone inclusion problems, providing in particular both primal and dual solutions. We propose a class of strongly convergent algorithms for constructing the best approximation to a reference point from the set of Kuhn-Tucker points of a general Hilbertian composite monotone inclusion problem. Applications to systems of coupled monotone inclusions are presented. Our framework does not impose additional assumptions on the operators present in the formulation, and it does not require knowledge of the norm of the linear operators involved in the compositions or the inversion of linear operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.