Abstract

Motivated by applications to congested traffic problems, we establish higher integrability results for the gradient of local weak solutions to the strongly degenerate or singular elliptic PDE−div((|∇u|−1)+q−1∇u|∇u|)=f,inΩ, where Ω is a bounded domain in Rn for n≥2, 1<q<∞ and (⋅)+ stands for the positive part. We assume that the datum f belongs to a suitable Sobolev or Besov space. The main novelty here is that we deal with the case of subquadratic growth, i.e. 1<q<2, which has so far been neglected. In the latter case, we also prove the higher fractional differentiability of the solution to a variational problem, which is characterized by the above equation. For the sake of completeness, we finally give a Besov regularity result also in the case q≥2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.