Abstract

Using the recent results obtained by combining Malliavin calculus and Stein’s method, we obtain the Berry–Esseen type bound of a sequence of the random variables of the form {XNYN,N∈N}, where XN and YN are square integrable random variables such that their Malliavin derivatives also are square integrable. The aim of this paper is to develop the new techniques, allowing us to obtain sharp Berry–Esseen bound. As an application, we will discuss the rate of convergence of the distribution of the maximum likelihood estimator of a parameter appearing in a stochastic partial differential equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.