Abstract

Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call