Abstract
We show that the entanglement (as quantified by the concurrence) and Berry phases of the adiabatic quantum states vanish for a two spin-1/2 system with Dzyaloshinski-Moriya (DM) interaction, while one of the spins is driven by a time-varing rotating magnetic field and the other one is coupled with a strong static magnetic field. The system is described by the Heisenberg XX model and the static field is in the direction of the rotation axis. We also investigate that how the concurrence and Berry phases depend on the DM interaction, coupling coefficient and the static magnetic field. In addition, we show that reversing the sign of the static magnetic field can cause exchange of the Berry phases and entanglement between the adiabatic states. Finally it is shown that each energy level approach causes jumps or cusp-like behaviour in the Berry phases and the concurrences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.