Abstract

We consider two systems of wave equations whose wave packet solutions have trajectories that are altered by the “anomalous velocity” effect of a Berry curvature. The first is the matrix Weyl equation describing cyclotron motion of a charged massless fermion. The second is Maxwell equations for the whispering-gallery modes of light in a cylindrical waveguide. In the case of the massless fermion, the anomalous velocity is obscured by the contribution from the magnetic moment. In the whispering-gallery modes, the anomalous velocity causes the circumferential light ray to creep up the cylinder at the rate of one wavelength per orbit, and can be identified as a continuous version of the Imbert–Federov effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.