Abstract

For a coordinate symmetric random vector $(Y_1,\ldots,Y_n)={\bf Y} \in \mathbb{R}^n$, that is, one satisfying $(Y_1,\ldots,Y_n)=_d(e_1Y_1,\ldots,e_nY_n)$ for all $(e_1,\ldots,e_n) \in \{-1,1\}^n$, for which $P(Y_i=0)=0$ for all $i=1,2,\ldots,n$, the following Berry Esseen bound to the cumulative standard normal $\Phi$ for the standardized projection $W_\theta=Y_\theta/v_\theta$ of ${\bf Y}$ holds: $$ \sup_{x \in \mathbb{R}}|P(W_\theta \leq x) - \Phi(x)| \leq 2 \sum_{i=1}^n |\theta_i|^3 E| X_i|^3 + 8.4 E(V_\theta^2-1)^2, $$ where $Y_\theta=\theta \cdot {\bf Y}$ is the projection of ${\bf Y}$ in direction $\theta \in \mathbb{R}^n$ with $||\theta||=1$, $v_\theta=\sqrt{\mbox{Var}(Y_\theta)},X_i=|Y_i|/v_\theta$ and $V_\theta=\sum_{i=1}^n \theta_i^2 X_i^2$. As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure ${\cal C}_p^n$ on the $\ell_p^n$ sphere as a special case, resulting in a bound of order $\sum_{i=1}^n |\theta_i|^3$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.