Abstract
Realising photonic analogues of the robust, unidirectional edge states of electronic topological insulators would improve our control of light on the nanoscale and revolutionise the performance of photonic devices. Here we show that new symmetry protected topological phases can be detected by reformulating energy eigenproblems as Berry curvature eigenproblems. The "Berry bands" span the same eigenspace as the original valence energy bands, but separate into pseudo-spinful and pseudo-spinless subspaces in $\mathrm{C}_2\mathcal{T}$-symmetric crystals. We demonstrate the method on the well-known case of Wu & Hu [Phys. Rev. Lett. 114, 223901 (2015)] and a recently discovered fragilely topological crystal, and show that both crystals belong to the same $\mathrm{C}_2\mathcal{T}$-protected $\mathbb{Z}_2$ topological phase. This work helps unite theory and numerics, and is useful in defining and identifying new symmetry-protected phases in photonics and electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.