Abstract

Embedded eigenstates are nonradiative modes of an open structure with momentum compatible with radiation, yet characterized by unboundedly large Q-factors. Traditionally, these states originate from total destructive interference of radiation from two or more non-orthogonal modes in periodic structures. In this work, we demonstrate a novel class of embedded eigenstates based on Berreman modes in epsilon-near-zero (ENZ) layered materials and propose realistic silicon carbide (SiC) structures supporting high-Q (~10^3) resonances based on these principles. The proposed structures demonstrate strong absorption in a narrow spectral and angular range, giving rise to quasi-coherent and highly directive thermal emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.