Abstract
We consider a family of sparse polynomial systems denned by a directed graph and a bipartite graph which depend on certain parameters. A convex polyhedral cone serves as a representative of all positive solutions of the family. We study the boundary of this cone with Bernstein's second theorem and Viro's method. In particular we present new results about the parameter regions where several positive solutions appear. Since they are steady states of an underlying dynamical system of mass action kinetics, the resulting multistationarity has important implications for the dynamics of that system. Examples from applications illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.