Abstract

In this paper, we obtain a Bernstein-type inequality for the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality can be viewed as an extension to the matrix setting of the Bernstein-type inequality obtained by Merlevède et al. [Bernstein inequality and moderate deviations under strong mixing conditions, in High Dimensional Probability V: The Luminy Volume, Institute of Mathematical Statistics Collection, Vol. 5 (Institute of Mathematical Statistics, Beachwood, OH, 2009), pp. 273–292.] in the context of real-valued bounded random variables that are geometrically absolutely regular. The proofs rely on decoupling the Laplace transform of a sum on a Cantor-like set of random matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.