Abstract

Spectral methods are now common in the solution of ordinary differential eigenvalue problems in a wide variety of fields, such as in the computation of black hole quasinormal modes. Most of these spectral codes are based on standard Chebyshev, Fourier, or some other orthogonal basis functions. In this work we highlight the usefulness of a relatively unknown set of non-orthogonal basis functions, known as Bernstein polynomials, and their advantages for handling boundary conditions in ordinary differential eigenvalue problems. We also report on a new user-friendly package, called SpectralBP, that implements Berstein-polynomial-based pseudospectral routines for eigenvalue problems. We demonstrate the functionalities of the package by applying it to a number of model problems in quantum mechanics and to the problem of computing scalar and gravitational quasinormal modes in a Schwarzschild background. We validate our code against some known results and achieve excellent agreement. Compared to continued-fraction or series methods, global approximation methods are particularly well-suited for computing purely imaginary modes such as the algebraically special modes for Schwarzschild gravitational perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.