Abstract
A general description of Bernstein processes, a class of diffusion processes, relevant to the probabilistic counterpart of quantum theory known as Euclidean Quantum Mechanics, is given. It is compatible with finite or infinite dimensional state spaces and singular interactions. Although the relations with statistical physics concepts (Gibbs measure, entropy,…) is stressed here, recent developments requiring Feynman’s quantum mechanical tools (action functional, path integrals, Noether’s Theorem,…) are also mentioned and suggest new research directions, especially in the geometrical structure of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.