Abstract
In this investigation, we present a new method for addressing fractional neutral pantograph problems, utilizing the Bernstein polynomials method. We obtain solutions for the fractional pantograph equations by employing operational matrices of differentiation, derived from fractional derivatives in the Caputo sense applied to Bernstein polynomials. Error analysis, along with Chebyshev algorithms and interpolation nodes, is employed for solution characterization. Both theoretical and practical stability analyses of the method are provided. Demonstrative examples indicate that our proposed techniques occasionally yield exact solutions. We compare the algorithms using several established analytical methods. Our results reveal that our algorithm, based on Bernstein series solution methods, outperforms others, exhibiting superior performance with higher accuracy orders compared to those obtained from Chebyshev spectral methods, Bernoulli wavelet method, and Spectral Tau method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.