Abstract
In the spectral Petrov‐Galerkin methods, the trial and test functions are required to satisfy particular boundary conditions. By a suitable linear combination of orthogonal polynomials, a basis, that is called the modal basis, is obtained. In this paper, we extend this idea to the nonorthogonal dual Bernstein polynomials. A compact general formula is derived for the modal basis functions based on dual Bernstein polynomials. Then, we present a Bernstein‐spectral Petrov‐Galerkin method for a class of time fractional partial differential equations with Caputo derivative. It is shown that the method leads to banded sparse linear systems for problems with constant coefficients. Some numerical examples are provided to show the efficiency and the spectral accuracy of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.