Abstract
AbstractWe describe on the Heisenberg group Hn a family of spaces M(h, X) of functions which play a role analogous to the trigonometric polynomials in Tn or the functions of exponential type in Rn. In particular we prove that for the space M(h, X), Jackson's theorem holds in the classical form while Bernstein's inequality hold in a modified form. We end of the paper with a characterization of the functions of the Lipschitz space by the behavior of their best approximations by functions in the space M(h, X).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.