Abstract

Two-dimensional Volterra–Fredholm integral equations of Hammerstein type are studied. Using the Banach Fixed Point Theorem, the existence and uniqueness of a solution to these equations in the space $$L^\infty ([0,1]\times [0,1])$$ is proved. Then, the operational matrices of integration and product for two-variable Bernoulli polynomials are derived and utilized to reduce the solution of the considered problem to the solution of a system of nonlinear algebraic equations that can be solved by Newton’s method. The error analysis is given and some examples are provided to illustrate the efficiency and accuracy of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.