Abstract

In this paper we introduce random proliferation models on graphs. We consider two types of particles: type-1/mutant/invader/red particles proliferates on a population of type-2/wild-type/resident/blue particles. Unlike the well-known Moran model on graphs –as introduced in Lieberman et al. (2005)–, type-1 particles can occupy in a single iteration several neighbouring sites previously occupied by type-2 particles. Two variants are considered, depending on the random distribution involving the proliferation mechanism: Bernoulli and binomial proliferation. By comparison with fixation probability of type-1 particles in the Moran process, critical parameters are introduced. Properties of proliferation are studied and some particular cases are analytically solved. Finally, by updating the parameters that drive the processes through a density-dependent mechanism, it is possible to capture additional relevant features as fluctuating waves of type-1 particles over long periods of time. In fact, the models can be adapted to tackle more general, complex and realistic situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.